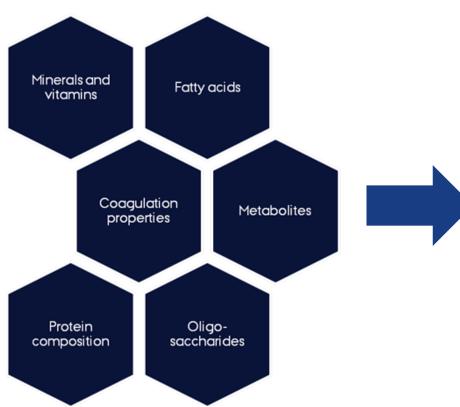
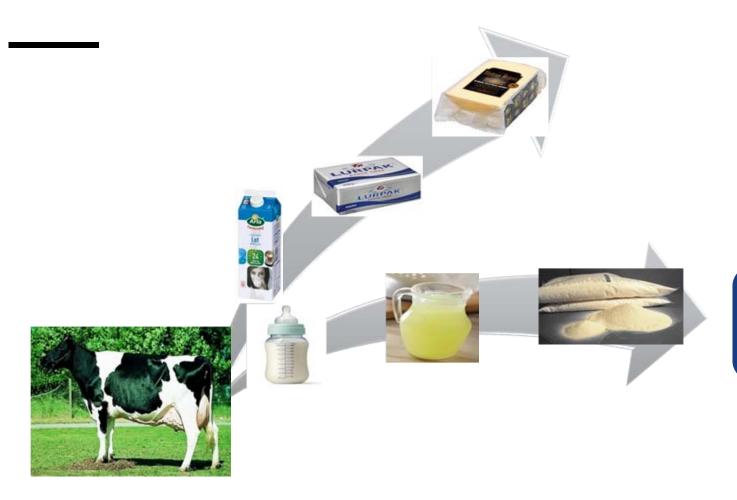
GENETIC PARAMETER ESTIMATION OF HIGH VALUE MILK PROTEINS AND WHEY TO CASEIN RATIO IN DANISH HOLSTEIN


N. A. POULSEN, T. T. LE, V. R. GREGERSEN, B. CHRISTENSEN, E.S. SØRENSEN, L.B. LARSEN & A.J. BUITENHUIS

Milk Genomics Initiative


Genetic effect

Increasing focus on whey components

Breeding for high value protein (Big Milk): OPN, α-LA, β-CN and B12-binding protein, whey to casein ratio

Human milk versus bovine milk

Protein	Human milk	Bovine milk	
Total protein	9-11 g/L	35 g/L	
α-lactalbumin	2.4 g/L (24 %)	0.5 g/L (1.5%)	
β-casein	1.3 g/L (13%)	10 g/L (28%)	
Osteopontin	138 mg/L	18 mg/L	
Transcobalamin	22-180 nmol/L	?	
Whey/casein ratio	~60:40	20:80	

Human milk gold standard for production of infant formula

Aim: Improved infant formula with optimal functionalities

Milk proteins:

- source of amino acids,
- •facilitate digestion and uptake of other nutrients (β -casein calcium, transcobalamin vitamin B12)
- •Physiological effects enhance immune function, defence against e.g. pathogenic bacteria, development of the gut

Aim of study

Identify QTLs using a GWAS approach (BF < 0.05):

 $Y_{iiklm} = u + parity_i + herd_i + b_1*DIM_k + b_2*e^{-0.05DIMk} + b3*SNP_m +$ animal_l + e_{ijklm}

Estimate heritabilities:

$$h^2 = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_E^2}$$

Conventional farms - indoor feeding,

Study design: maximized genetic variation, minimized environmental variation

POP1 Danish Holstein N = 322Bovine HD

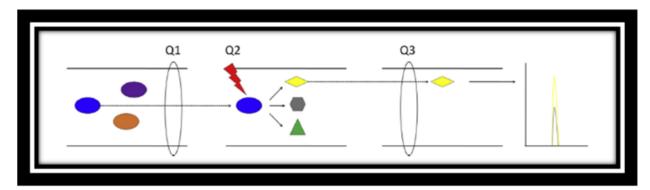
Partiy 1-3 Average: 1.77

DIM: 138-227 Average: 181

#Herds: 19

POP2 Danish Holstein N = 341Bovine SNP50

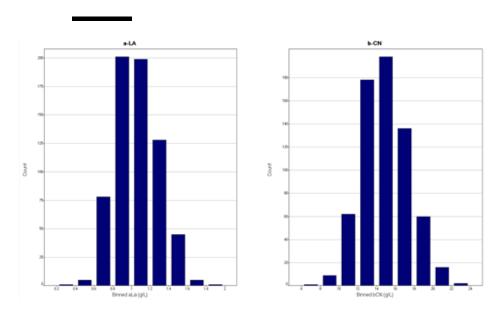
Partiy 1-6 Average: 1.98


DIM: 4-877 Average: 180

#Herds: 3

Absolute quantification of α -LA and β -CN

Quantification by multiple reaction monitoring (MRM)


Protein	Peptide sequence	Q1	Q3
α-La	LDQWLCEK	546.2	735.3
	LDQWLCEK	546.2	863.4
	LDQWLCEK	546.2	978.4
	VGINYWLAHK	400.9	468.3
	VGINYWLAHK	400.9	654.4
	VGINYWLAHK	400.9	817.4
β-CN	VLPVPQK	390.7	372.1
	VLPVPQK	390.7	471
	VLPVPQK	390.7	568.3
	AVPYPQR	415.7	400.2
	AVPYPQR	415.7	563.1
	AVPYPQR	415.7	660.1

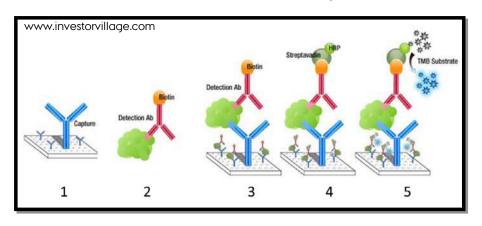
- Using a triple quadrupole mass spectrometry instrument (Le et al., 2017, IDJ 67, 2-15)
- Quantification based on determination of the amount of the specific peptides from α -LA and β -CN generated by tryptic cleavage, representing unique parts of the protein sequence

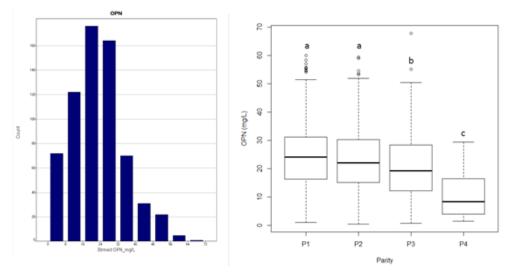
Results for α -LA and β -CN

α-LA mean: **1.1 g/L** (0.4-1.9 g/L) h²: **0.12** (0.09)

β-CN mean: **14.9 g/L** (7.5-23.4 g/L)

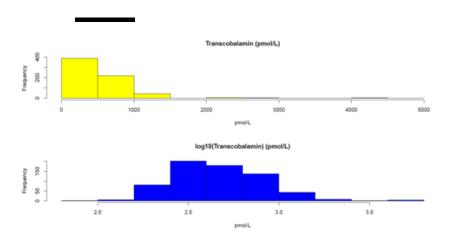
h²: **0.05** (0.07)


- Large variation of specific proteins in bovine milk
- Low h²
- GWAS: No significant SNPs found for α -LA or β -CN

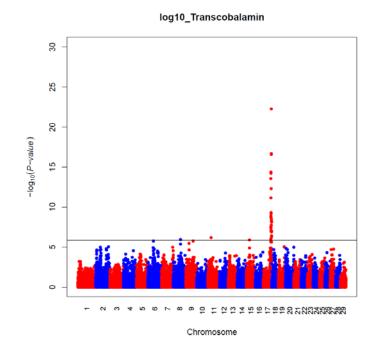


Results for OPN

Sandwich ELISA for absolute quantification of OPN

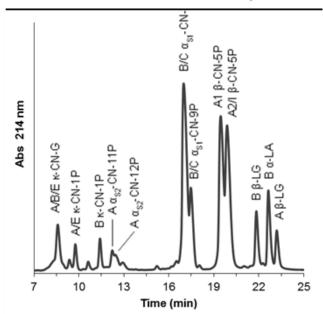

OPN mean: **23 mg/L** (0.4-68 mg/L) h²: **0.15** (0.09)

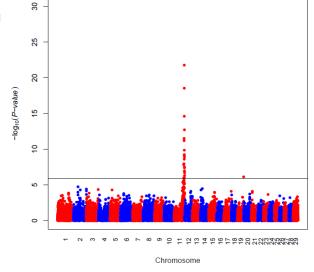
- Large variation and higher levels of OPN in bovine milk than reported earlier
- Significant effect of parity observed
- Low h²
- GWAS: No significant SNPs detected



Results for transcobalamin

Mean: 557 pmol/L (96-4672 pmol/L) h²: 0.44 (0.12), Log₁₀Transcobalamin 0.61 (0.14)


GWAS on transformed data reveal major QTL on BTA17
No obvious candidate genes for transcobalamin found within this region, but need to be explored more



Results for whey:casein ratio

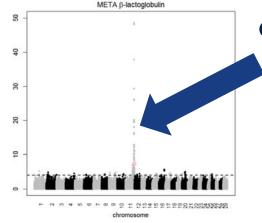
LC/ESI-MS for relative quantification

Whey:casein ratio

Mean: **0.15** (0.08-0.26)

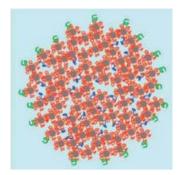
h²: **0.40** (0.11)

- Moderate heritability
- Significant QTL, BTA 11
- Most significant SNP was located within PAEP,
 which is the gene encoding β-lactoglobulin (β-LG)



Association to relative protein contents

	Danish Holstein			
Trait ¹	Mean	SD	h ² (SE)	
Protein%	3.43ª	0.26	0.47 (0.19)	
Casein%	2.66ª	0.12	0.43 (0.18)	
α _{s1} -CN%	0.26ª	0.03	0 (0.12)	
a _{s2} -CN%	0.05ª	0.01	0.14 (0.15)	
β-CN%	0.36ª	0.03	0.05 (0.13)	
K-CN%	0.06ª	0.01	0.77 (0.21)	
α-LA%	0.03ª	0.01	0.40 (0.19)	
β-LG%	0.08ª	0.02	0.58 (0.20)	

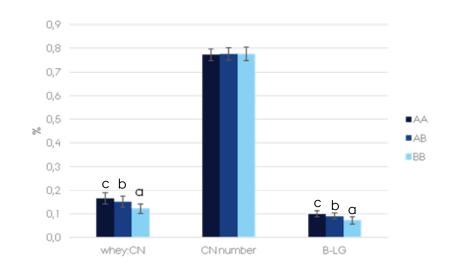


QTL on BTA11 including PAEP for β -LG%

Neither absolute (g/L) nor relative (%) β -CN seem to be heritable Relative contents of α_{s1} -CN%, α_{s2} -CN%, and β -CN% have low heritabilities

 κ -CN%, α-LA%, and β -LG% moderate to high heritabilities Variation in PAEP most likely control variation in β -LG%

Dalgleish et al. 2011


Association to β -LG genetic variants

 β -LG variant A and B identified by LC/ESI-MS

Well-known to affect \(\beta\)-LG%, but probably also explains most of the variation in whey:casein ratio

Thus relative β -LG rather than variations in the caseins (>80% of the proteins) seem to determine the variation in whey:casein ratio

This is also however not seen for the casein number measured by IR (Milkoscan)

Conclusions

- Robust methods for quantification of high value proteins in milk developed
- Low heritabilities and no significant SNPs detected for α -LA, β -CN and OPN
- Parity seems to effect OPN composition
- Moderate heritabilities for whey:casein ratio, significant QTL on BTA 11, most likely related to variation in PAEP controlling relative β-LG variation
- Moderate heritability for transcobalamin
- Good potential to increase the content of specific proteins and whey:casein ratio through selective breeding

Acknowledgements

Danish Milk Levy Fund

Food Science, Aarhus University: Lotte Bach Larsen, and Thao T. Le

Molecular Biology and Genetics, Aarhus University: Bart Buitenhuis, Vivi Gregersen, Brian Christensen, Esben

Skipper Sørensen, Grum Gebreyesus, and Christian W. Heegaard

Aarhus University Hospital: Ebba Nexø and Eva Greibe

